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INTRODUCTION

Metal forming processes, including cross 
wedge rolling and skew rolling, are used for man-
ufacturing axisymmetric parts. Examples of prod-
ucts include stepped preforms used in the forging 
process [1], transmission shaft forgings [2], as 
well as short stepped shafts [3]. These parts can 
be made of steels and alloys of non-ferrous met-
als [4, 5]. A new skew rolling process conducted 
with three tapered rolls has been developed at the 
Lublin University of Technology. This process is 
used for producing stepped axles and shafts. All 
working tools are described by a forming angle α 
and are spaced every 120° on the circumference 
of the workpiece [Fig. 1]. The rolls are mounted 
askew to the workpiece axis, at an angle θ, and 
they are rotated with the same velocity in the same 
direction. The tools move radially relative to the 
center line of the workpiece. They converge and 
diverge, thereby reducing the cross section of the 
workpiece. The spacing of the rolls is synchro-
nized with the axially moving chuck that holds 
the workpiece by one end. In effect, it is pos-
sible to produce parts of variable cross section, 

the geometry of which is obtained as a result of 
sequential motion of the tapered rolls and chuck. 

Studies conducted at the Lublin University 
of Technology have investigated the skew rolling 
of parts of different shapes. These included pre-
forms of scrapers (for scraper belt conveyors used 
e.g. in the mining industry), connecting rods and 
hooks [6]. They were produced in a scale of 1:2 
due to design constraints of the laboratory roll-
ing mill. The parts had high dimensional accuracy 
and were free from internal cracks. In addition, 
railcar axles were rolled in a scale of 1:5 [7]. 
These parts were also internal crack-free. In spite 
of high dimensional accuracy, the rolled parts had 
small helical grooves on their surface. This, how-
ever, is not a serious defect, as the grooves can 
be removed by machining. Experiments have also 
been conducted on rolling hollow steel parts with 
variable cross section [8–10]. The use of hollow 
tubes made it possible to avoid additional pro-
cessing operations such as drilling, as well as to 
prevent unnecessary material loss which occurs 
when hollow parts are formed from solid billets. 

Skew rolling with three tapered rolls makes 
it possible to produce elongated axisymmetric 
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parts for the machine-building, aircraft, auto-
motive, and railway industry. The use of cross 
wedge rolling to the manufacture of such parts is 
limited by the necessity of constructing working 
tools with large geometric dimensions. The use of 
forging is ineffective due to a long forming time. 
In contrast, the use of the developed skew rolling 
method to that end ensures reduced manufacture 
time of these parts, lower energy consumption 
of the process, as well as reduced costs of con-
structing new sets of working tools. The process 
is characterized by the fact that products of dif-
ferent shapes can be rolled with one set of tools. 
It is only necessary to determine the sequence of 
movement of tapered rolls and jaw chuck. Due 
to the universality of the forming tools and the 
change in their feed rate, the proposed skew roll-
ing technique is cost-effective even with respect 
to piece production.

The stability of the rolling process depends 
on parameters such as a forming angle α, tool 
angle θ relative to the rolling axis, chuck velocity 
Vu, and reduction ratio δ. Obtained surface qual-
ity of rolled parts depends on the initial condi-
tions of the rolling process. Surface texture is de-
scribed by waviness, roughness and defects such 
as scratches, cracks or corrosion pits. Its quality 
may also have impact on further processing of 
preforms [11]. This means that the initial param-
eters of rolling must be appropriately selected in 
order to produce parts of satisfactory quality. This 
aspect is all the more important when this rolling 

process is employed in forging plants, where it is 
used for fabricating semi-finished parts for fur-
ther processing or new products. The determina-
tion of appropriate values of initial parameters 
makes it possible to reduce the time of fabrication 
of acceptable finished parts.

The objective of this study was to assess the 
effectiveness of selected machine learning mod-
els in predicting values of waviness Wt. This 
parameter describes surface texture, including 
peaks and valleys as well as their spacing. The ef-
fectiveness of the models was expressed with the 
coefficient of determination R2.

RESEARCH METHOD

Scope of experiments

Experiments involved determining the effect 
of rolling variables on the quality of rolled parts 
expressed as waviness, Wt. A schematic design 
of the rolling process in shown in Figure 1. The 
billet was a C60 steel rod with a diameter d0 = 
52 mm and a length of 330 mm. The rod was pre-
heated to 1200 °C in an electric chamber furnace.

The experiments were conducted with the use 
of three sets of tapered rolls (Table 1). Each set of 
the tools had a different forming angle α, i.e. 15°, 
20°, 25°. All rolls had the same sizing part in the 
form of a cylindrical section with a constant length 
a. The rolls were set askew at a variable angle θ 

Fig. 1. Schematic representation of a skew rolling process conducted with three tapered rolls
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of 2.5°, 5°, 7.5° relative to the center line of the 
workpiece. For individual angles of the tapered 
rolls, the jaw chuck was assigned three different 
linear velocities Vu, i.e. 10 mm/s, 20 mm/s and 40 
mm/s. Also, three different values of the reduction 
ratio δ were used, i.e. 1.13, 1.3, 1.53. The reduc-
tion ratio describes strain and is expressed as:

𝛿𝛿𝛿𝛿 =
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑1
 

 

𝑅𝑅𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

 

𝑧𝑧𝑧𝑧 =
𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇
𝜎𝜎𝜎𝜎

 

 

(1)

where: d0 – initial billet diameter;   
d1 – reduced diameter.

The experiments were conducted on a labo-
ratory skew rolling mill (Fig. 2). The test stand 
has a segment design. The main components of 
the rolling mill include a frame (1), mill stand 
(2), drive system (3), powertrain (4), assembly 
for holding the workpiece (5) and rolled part (6), 
chuck unit (7), and axial actuator unit (8). The 
rolling mill was additionally provided with an 
electric drive. It was also equipped with a mea-
suring system based on the LabVIEW software 
for force parameters acquisition, including axial 
and radial loads as well as torque.

The computer numerical control system of 
this machine makes it possible to form parts with 
different shapes as a result of sequential motion 
of the working tools and jaw chuck. The tapered 
rolls and jaw chuck are moved by electric actu-
ators, and their motion is controlled by a CNC 

application that allows visualization of changes 
in the rolling process parameters [12]. Depend-
ing on the shape of the preforms or forgings, it 
is necessary to create a dxf file with the outline 

Fig. 2. Laboratory skew rolling mill equipped with three tapered rolls (description in the text)

Table 1. Skew rolling parameters used in experiments
α [°] Θ [°] Vu [mm/s] δ [-]

15                      
or                           
20                         
or                        
25

2.5

10
1.13
1.3

1.53

20
1.13
1.3

1.53

40
1.13
1.3

1.53

5

10
1.13
1.3

1.53

20
1.13
1.3

1.53

40
1.13
1.3

1.53

7.5

10
1.13
1.3

1.53

20
1.13
1.3

1.53

40
1.13
1.3

1.53
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of this product. This file will then be converted 
by the controller into an executive program in the 
form of a command line (G-code), allowing syn-
chronization of the working tools and jaw chuck. 
Thus, in each operation, a new product differing 
in external outline can be rolled, still using the 
same set of tapered rolls.

Waviness results

Waviness measurements were made by con-
tact method with Hommel-Etamic’s 3D T8000 
RC120-400 profilometer. The waviness Wt was 

measured over a gauge length ln of 48 mm with 
a velocity Vt maintained constant at 1 mm/s. The 
selection of individual measurement parameters 
was made in accordance with the PN-EN ISO 
4287:1999 standard.

Figures 3–5 show selected distributions of the 
waviness Wt obtained for different reduction ra-
tios, i.e. δ = 1.13, δ = 1.3 and δ = 1.53, with vari-
able forming angle α and tool angle θ. In order to 
more accurately visualize the changes that have 
occurred, dot plots connected by lines were used. 
Examples of obtained outer surfaces of the rolled 
parts are shown in Figure 6. 

Fig. 3. Waviness Wt of parts rolled with a tool angle of θ = 2.5°

Fig. 4. Waviness Wt of parts rolled with a tool angle of θ = 5°
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The surface texture examination results 
showed that an increase in the forming angle α 
of the tapered rolls led to a slight increase in the 
waviness Wt. The greatest increase was obtained 
with δ = 1.53 and the chuck velocities Vu = 20 
mm/s and 40 mm/s. On changing the α angle val-
ue from 15° to 25°, the value of Wt increased by 

226% for Vu = 20 mm/s and by 74% for Vu = 40 
mm/s. As a result, the increase in α led to reduced 
surface quality of the rolled parts. The tool angle 
θ was found to have a significant effect on the 
waviness Wt. The waviness value increased with 
increasing the θ angle. To give an example, for 
the tools with α = 15° (for δ = 1.3), the Wt value 

Fig. 5. Waviness Wt of parts rolled with a tool angle of θ = 7.5°

Fig. 6. Outer surface of the parts obtained using tapered rolls with α = 15° (θ = 5°) and reduction ratios 
from δ = 1.13 to δ = 1.53 (starting from the top): a) Vu = 10 mm/s, b) Vu = 20 mm/s, c) Vu = 40 mm/s
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increased by 82% when the θ angle was increased 
from 2.5° to 5° and by 42% when the θ angle was 
increased from 5° to 7.5°. The chuck velocity 
Vu for different values of the tool angle relative 
to the rolling axis (for constant α) did not have 
any significant effect on the surface quality of the 
rolled parts. In contrast, a close relationship was 
observed between the waviness Wt and the cross-
sectional reduction of the workpiece. The lowest 
quality surface of the rolled parts was obtained 
when the rolling process was conducted with the 
reduction ratio δ = 1.13, irrespective of the values 
of other parameters. 

Description of tested machine 
learning models 

Machine learning methods were used to an-
alyze defects on the surface of rolled products 
[13]. For this purpose, a classification method 
was used using models, i.e. Artificial Neural Net-
works, Support Vector Machines and Decision 
Trees. The models had high accuracy in predict-
ing defects. The highest value was obtained for 
Decision Trees equal to 95.9%.

Another example of the application of ma-
chine learning methods was the prediction of 
roughness values of products shaped by the sin-
gle point incremental forming (SPIF) method 
[14]. Regression methods using Artificial Neural 
Networks and Support Vector Regression mod-
els were used. In this case, the SVR model was 
highly effective, achieving a high R2 coefficient 
of determination equal to 99%. In comparison, 
ANN’s achieved an R2 coefficient of 95%.

Therefore, five different machine learning re-
gression models were used in the study, including 
Linear Regression, k-Nearest Neighbors Regres-
sion, Random Forest Regression, Support Vector 
Regression, and XGBoost. The first four mod-
els were taken from the scikit-learn library [15], 
while the last one from XGBoost [16].

Input data for the models were the skew roll-
ing process parameters, i.e. forming angle α, tool 
angle θ, chuck velocity Vu, and reduction ratio 
δ, the values of which are listed in Table 1. The 
target variable was waviness Wt. The machine 
learning dataset constituted 70% of the entire set 
of variables. The remaining part, i.e. 30%, was a 
testing dataset. Prediction values were calculated 
using Google Colaboratory. The effectiveness of 
the employed models was determined by the co-
efficient of determination R2, defined as:

𝛿𝛿𝛿𝛿 =
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑1
 

 

𝑅𝑅𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

 

𝑧𝑧𝑧𝑧 =
𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇
𝜎𝜎𝜎𝜎

 

 

(2)

where: yi – i-th observation of the variable y;   
ŷi – theoretical value of the variable ob-
tained from the model;     
y̅ – arithmetic mean of the experimental 
values of the variable.

Input data were subjected to standardiza-
tion using the StandardScaler function from the 
scikit-learn library. The operation was performed 
in compliance with the following:

𝛿𝛿𝛿𝛿 =
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑1
 

 

𝑅𝑅𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

 

𝑧𝑧𝑧𝑧 =
𝑥𝑥𝑥𝑥 − 𝜇𝜇𝜇𝜇
𝜎𝜎𝜎𝜎

 

 

(3)

where: x – experimental value of the input variable;  
μ – arithmetic mean of the input data for a 
given parameter;     
σ – standard deviation of the input data 
for a given parameter.

The GridSearchCV technique (scikit-learn 
library) was also employed to select hyperparam-
eters for the selected regression models in order 
to find best fit. 

RESULTS ANALYSIS

The calculations led to obtaining the coeffi-
cient of determination R2, the values of which are 
listed in Table 2. 

The highest value of R2 = 0.82 was obtained 
for the random forests model. The worst fit was 
obtained for the k-nearest neighbors model, for 
which the R2 value was 0.37. Hence, this model 
is not considered in further analysis of the results.

A plot illustrating the test and prediction val-
ues of waviness obtained for the random forest 
model is shown in Figure 7. 

The effect of individual input variables on the 
obtained waviness Wt was also investigated, us-
ing the SHAP library [17] and the Shapley value 

Table 2. Values of the coefficient of determination R2 

for different regression models
Model R2

Random Forest 0.82

Support Vector Regression 0.75

XGBoost 0.68

Linear Regression 0.67

K-nearest Neighbors 0.37
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to that end. Figures 8-11 show the variable sig-
nificance plots for every tested model. The reduc-
tion ratio δ and the tool angle θ (in this particular 
order) have the greatest impact on the waviness of 
the random forests and XGBoost models. As for 

other models, i.e. support vector regression and 
linear regression, the two input variables have a 
key impact on the waviness of these models yet 
in a reverse order. It must however be emphasized 
that their effect on the waviness Wt changes.  

Fig. 7. Test and prediction values of Wt for a random forest

Fig. 8. Variable significance plot for a random forests model

Fig. 9. Variable significance plot for a support vector model

Fig. 10. Variable significance plot for an XGBoost model
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Fig. 11. Variable significance plot for a linear regression model

Fig. 12. Effect of variables on the target value, for a random forests model

Fig. 13. Effect of variables on the target value, for a support vector model

Fig. 14. Effect of variables on the target value, for an XGBoost model

Fig. 15. Effect of variables on the target value, for a linear regression model
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The Shapley value of the reduction ratio δ is 13% 
greater than that of the θ angle for the random for-
ests model and 10% greater than that of the XG-
Boost model. For the support vector model the 
effect of the tool angle θ on the waviness Wt is 
42% higher than that of the reduction ratio δ, and 
for the linear regression model it is 46% higher. 
The effect of the forming angle α and the chuck 
velocity Vu (it had the lowest Shapley value for 
the three models) on the obtained target variable 
is of lesser significance. It can therefore be con-
cluded that these skew rolling parameters should 
not have any considerable effect on the surface 
quality of semi-finished and finished parts. 

The SHAP library was also used to determine 
the positive and negative effect of individual in-
put values of the rolling parameters on the target 
variable Wt (Figs. 12–15). It can be observed for 
all regression models that the use of a low reduc-
tion ratio (δ = 1.13), high values of the tool angle 
(θ = 7.5°) and the forming angle α = 25° leads 
to a significant increase in the waviness value 
and thus to reduced surface quality of the rolled 
parts. Each of these parameters leads to a posi-
tive SHAP value. The results demonstrate that the 
waviness Wt on the surface of the rolled parts can 
be decreased by using tools with smaller forming 
angles, i.e. α = 15° and α = 20°. Also, the tool 
angles θ = 2.5° and θ = 5° will lead to a decrease 
in Wt due to a negative SHAP value.

CONCLUSIONS

An analysis of the results obtained from the 
tested machine learning models leads to the fol-
lowing conclusions: 
 • the surface quality of a rolled part primarily 

depends on the reduction ratio δ and the tool 
angle θ,

 • the chuck velocity Vu and the forming angle α 
have the smallest impact on the surface quality 
of a rolled part,

 • the surface quality of a rolled part is reduced 
when the skew rolling process is conducted with 
low reduction ratios δ and high tool angles θ,

 • the use of the random forests model for predict-
ing the waviness Wt makes it possible to obtain a 
high value of the coefficient of determination R2,

 • the highest-fit model, i.e. the random forests 
model, makes it possible to reduce the time re-
quired for determining the initial parameters 
of the rolling process,

 • further studies should be conducted to apply 
the obtained regression model results to skew 
rolling processes for stepped parts.
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